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Abstract

The flow-induced oscillatory behavior of a rectangular body with a length-to-height ratio of L=H ¼ 2 in

incompressible, turbulent flow is numerically investigated at different Reynolds numbers based on the body length in a

range between 2� 104 and 12� 104 at zero incidence. The body has one degree of freedom perpendicular to the mean-

flow direction with a linear spring and linear damping. To compute the flow, a finite-volume based Navier–Stokes

CFD-code is used, and a finite-difference-based algorithm is employed to solve the differential equation for the body

vibration. The goals are the numerical simulation of an incident flow velocity at which resonance occurs, the exact

determination of the physical mechanisms of the resonance, especially in the flowing medium, and a discussion of the

numerical requirements to simulate the phenomenon. Key parameters of the overall model which exert influence on the

quality of the simulation, e.g. turbulence modelling, time step and grid resolution, are examined. To achieve this aim,

simulations with both steady and oscillating bodies are compared with experimental data and discrepancies are

analyzed. Finally, an outlook on suggested future steps is given.

r 2003 Elsevier Ltd. All rights reserved.

1. Introduction

The aim of the simulations is to determine the flow velocity at which a rectangular bluff body, Fig. 1, with a length-

to-height ratio of L=H ¼ 2 starts to oscillate at its natural frequency f0 ¼
ffiffiffiffiffiffiffiffiffi
c=m

p
due to unsteady friction and pressure

forces F ðtÞ acting on the body’s surface. To compute the oscillatory motion yðtÞ of the rectangular body, it is idealized as
a point mass m on a bearing with linear damping d and stiffness c and one degree of freedom perpendicular to the mean-

flow direction, as shown in Fig. 1, where U represents the mean flow velocity. The governing differential equation is

given in Eq. (9).

The numerical results are compared to experimental results for Re-numbers Re ¼ UL=n in a range between 2� 104

and 12� 104 (Ikenouchi et al., 1982), in which the natural frequency is f0 ¼ 3:27 Hz: The damping is very low with an

attenuation factor or damping ratio of D ¼ d=ð2mf0Þ ¼ 0:0032: The Scruton number can be calculated with the given

density ratio Rr to be Sc ¼ 2Dm=ðrH2Þ ¼ 4DRr ¼ 2:88: For resonance to occur the excitation frequency must

approach the natural frequency f0; and the damping must be small, i.e. Do1=
ffiffiffi
2

p
: These parameters can be calculated

based on an available analytical solution obtained for a harmonic excitation force given in Eq. (11).

This unsteady harmonic force results from a superimposed vortex street and vortex-edge interaction representing

complex flow phenomena and cannot be computed analytically. Therefore, the flow must be computed numerically

because it both influences and is influenced by the body’s motion. A coupled solution becomes essential, especially when
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Nomenclature

ALE arbitrary Lagrange–Euler

CL ¼ F=ðrU2LÞ; lift coefficient based on body length

CD drag coefficient based on body length

D ¼ d=ð2mf0Þ ¼ 0:0032; attenuation factor

DES detached eddy simulation

DFT discrete Fourier transformation

DNS direct numerical simulation

EARSM explicit algebraic Reynolds stress model

EVM eddy viscosity model

F force acting on body due to pressure and friction

H ð¼ 0:13 mÞ; height of body
L ð¼ 0:26 mÞ; length of body measured in mean-flow direction

LLR local linear realizable

LES large eddy simulation

P static pressure

Pk; Po production terms in turbulence transport equations

(U)RANS(E) (unsteady) Reynolds averaged Navier–Stokes (equation)

Re ð¼ UL=nÞ; Reynolds number based on body length

Rr m=ðrHLÞ ¼ 224:7; density ratio (body/fluid)

Sij strain-rate tensor

SA Spalart–Allmaras

SALSA strain-adaptive linear Spalart–Allmaras

Sc ð¼ 2Dm=ðrH2Þ ¼ 4DRr ¼ 2:88Þ; Scruton number

Sr ð¼ fSrH=UÞ; Strouhal number
U mean flow velocity

U@V velocity of volume boundary for moving grids

V ð¼ U=f0HÞ; normalized inflow or mean flow velocity, also volume in volume integrals

@V surface of volume for surface integral

Yþ ¼ ln
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1=n@Ut=@Yn

p� �
; normalized wall distance in boundary layer theory where t stands for tangential and n

for normal to wall

c linear stiffness of bearing

cb1; cb2; cw1; cw2;
cw3; cv1; bo; bk factors of turbulence models

d linear damping of bearing

dAi component of face-normal vector for surface integration

f0 ¼
ffiffiffiffiffiffiffiffiffi
c=m

p
¼ 3:27 Hz

� �
; natural frequency of body oscillations

fA frequency of vortices impinging on trailing edge

fD ¼ f0
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� D2

p� �
; damped natural frequency

fSr main frequency of lift-coefficient oscillations

fm maximum frequency resolved by chosen time step

ft modelled frequency

i imaginary unit

ðÞi vector component, i ¼ 1; 2; 3 or x; y; z
k turbulent kinetic energy

l length scale in turbulent transport equations

ln wall-normal distance

m ð¼ 9:304 kgÞ; mass of the body
ð Þ0i turbulent fluctuation of component

u0iu
0
j Reynolds stress tensor, averaged second moment of turbulent velocity fluctuations

t time

yðtÞ time-dependent excitation of body
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excitation amplitudes are needed. Due to the fact that the body is not a streamlined shape and presents a blunt obstacle

to the flow, unsteady vortices and complex three-dimensional flow structures emerging at the leading edge have to be

represented by the numerical method. To obtain a quantitatively correct prediction in the frequency or time domain

poses a significant challenge for any flow solver.

The shape of the body plays a predominant role in the resonance behavior because a simple Karman-vortex street

with a pair of opposing eddies of equal size is not an adequate description of the flow phenomena (Sakamoto et al.,

2000). Much longer bodies also cause eddies emerging at the leading edge, but they can impinge on the surface again

downstream resulting in a reattachment of the flow followed by a subsequent separation at the trailing edge. In that case

the frequency of the vortex shedding alone cannot serve to estimate the excitation frequency, as the impinging vortices

add an extra force component acting at a different frequency than the wake vortex formation alone.

If the length-to-height ratio L=H slightly exceedsE2 (Deniz and Staubli, 1997), these eddies hit the trailing edge with

a higher frequency than the vortex shedding. This can lead to earlier resonance, as shown in Fig. 2. For short bodies

with L=Ho2; the leading edge vortices remain uninfluenced by the body shape and they alone make up the vortex street
with a dominant frequency equal to that at which the vortices are shed.

In the case examined in this study with L=H ¼ 2; a recirculation zone develops at the beginning of a leading edge

vortex formation. Advancing in time, this leads to strong streamline curvature together with a maximum in lift. The

arising force draws the body in the direction of the recirculation zone due to the lower pressure acting on that surface.

The flow then partially impinges on the trailing edge causing a force opposing the lift and smaller secondary eddies with

a higher frequency emerge at the trailing edge separation. Thus, as seen in Fig. 11, these impinging vortices reduce the

lift to a certain amount, and occur at a frequency higher than vortex shedding fA > fSr; albeit, with a smaller amplitude.
The discrete Fourier transformation of the time dependent lift coefficient consequently shows these distinct frequencies,

Fig. 12. Due to the linearity of the differential equation Eq. (9) for the oscillating body both frequencies alone, i.e. fSr
for vortex shedding and fA for vortex impingement, can cause resonance. This means that, when fAEf0; i.e. the leading
edge vortices impinge on the trailing edge with a frequency fA close to the natural frequency f0 of the body and its

bearing, resonance will occur.

Obviously, in this case it is not sufficient to estimate the frequency of wake vortex formation fSr alone, which is also

represented in the work by (Deniz and Staubli, 1997), where they evaluate the Strouhal number versus the elongation
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Dt time step

dij Kronecker Delta, unity tensor

k ð¼ 0:41Þ von-K!arm!an constant

m fluid dynamic viscosity

n ð¼ m=rÞ; fluid kinematic viscosity

nt turbulent viscosity or eddy viscosity

*n turbulent viscosity in transport equations of one-equation models

r density of fluid

o turbulent frequency

Fig. 1. Body and bearing, mechanical model.
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ratio L=H: In general it can be said that the highest frequency has to be used to compute the Strouhal number, if an

estimation of the critical velocity is desired, and obviously, an estimation of the normalized resonance flow velocity with

VE1=Sr thus has to fail. It is also not possible to use galloping as an estimation as this phenomenon occurs even later at
a higher mean flow velocity (Dowell, 1995).

Thus, the complex interaction between the flow and the body’s (at first glance, simple) geometry cannot be easily

estimated and poses a challenge for the flow mechanical solver, requiring an exact capturing of time and length scales

over a wide range. There are at least two different frequencies with different amplitudes to resolve caused by emerging

and impinging vortices at the leading and trailing edge. In order to capture this phenomenon it is essential to represent

the length of the recirculation zone correctly, as this ensures the vortex impingement on the trailing edge.

For the lower frequencies of wake vortex formation fSr this is not as essential since interaction between the leading

edge vortices and the trailing edge of the body does not influence this phenomenon. Therefore it is expected that the

excitation at higher flow velocities, where the frequency fA is already beyond the natural frequency f0; can be computed
correctly with less numerical effort.

2. Method

In this section, the numerical method is first briefly described followed by a detailed description of the code

enhancements for computing the body’s oscillations.

2.1. Fluid-mechanical solver

The flow is computed numerically using an in-house finite-volume-based code solving the unsteady and

incompressible Reynolds-averaged Navier–Stokes (URANS) equations Eq. (1) in an implicit manner of first or, if

desired, second-order accuracy in space and time. The momentum-conservation equation in an ALE formulation thus

reads Z
V

@Ui

@t
dV þ

I
@V

UiðUj � U@V
j Þ dAj ¼ �

I
@V

P

r
dAi þ

I
@V

n
@Ui

@xj

þ
@Uj

@xi

	 

� u0iu

0
j dAj ; ð1Þ

where summation is implied over equal indices and all components are given in Cartesian coordinates. The Euler form

ðU@V
j ¼ 0; meaning that the surface of the control volume does not move) is used for the stationary body, whereas the

grid is moved in a rigid-body-like manner according to the oscillations of the body, so that U@V
j directly corresponds to

the velocity @y=@t of the body as computed using Eq. (9). The fluid is treated as isothermal so that the viscosity can be

kept constant and no transport equation for enthalpy or internal energy needs to be solved to compute the temperature.

The Reynolds stresses u0iu
0
j arise in the averaging process and have to be modelled to avoid the solution of an additional

six transport equations for the three-dimensional case.

All scalar quantities as well as the Cartesian components of tensorial quantities are stored in the cell centers of

arbitrarily curvilinear, semi-structured grids that can capture complex geometries and allow local refinement. Moving

and deforming grids are implemented by obeying the Space Conservation Law (Demirdmi!c and Peri!c, 1988; Bunge et al.,
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Fig. 2. Scheme of leading edge separation and vortices for different length-to-height ratios.
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2001). Diffusive terms are approximated with central schemes, whereas convective terms can be treated with central or

upwind-biased limited schemes of higher order (Xue, 1998). The linearized equations are solved sequentially and the

pressure is iterated to convergence using a pressure-correction scheme of the SIMPLE type that assures mass

conservation because the pressure equation is derived from the continuity equation (Karki and Patankar, 1989).

A generalized Rhie and Chow interpolation is used to avoid an odd–even decoupling of pressure, velocity- and

Reynolds-stress components (Obi et al., 1991). A variety of turbulence models featuring different degrees of complexity

are implemented (algebraic, one- or two-equation models) to solve for the Reynolds stresses (Rung, 2000).

2.1.1. Turbulence models

The investigation is limited to two different one- and two different two-equation turbulence models. These are the

Wilcox k–o model (Wilcox, 1994), the SA-model (Spalart and Allmaras, 1992) and a modified version of each with

variable coefficients, the LLR k–o model (Rung and Thiele, 1996) and SALSA-model (Strain Adaptive, Linear SA

model) (Rung et al., 2002). The modified versions are specifically tailored for non-equilibrium flows. These models have

been used and validated in the context of fluid–structure interaction (Haase et al., 2002; Bunge et al., 2001); however,

unsteady effects of higher frequency do not play such a dominant role in that cases.

EARSM have not yet been tested in this specific study, so that all models applied in this study rely on the isotropic or

linear eddy-viscosity principle

u0iu
0
j ¼

2

3
kdij � nt

@Ui

@xj

þ
@Uj

@xi

	 

�
2

3

@Uk

@xk

dij

� �
|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

¼2Sij

: ð2Þ

An inherent error of Eq. (2) is the prediction of isotropic normal stresses ðu01Þ
2 ¼ ðu02Þ

2 ¼ ðu03Þ
2 for plane, purely shear

dominated flows where apart from, for example @U1=@x2 and @U2=@x1; all other components of the strain rate tensor

vanish. In reality, these normal stresses differ by a factor in the range of 3–10 between the smallest and largest stress

component in fully developed turbulent flows of that kind (Rung, 2000).

Another significant drawback of these kinds of models is the underlying assumption of a structural equilibrium for

the Reynolds-stress tensor, which is a basic premise when trying to reduce the Reynolds-stress transport equations to an

explicit expression connecting mean flow properties and turbulent fluctuations. Thus, streamline-curvature effects, if

present, cannot be captured by these models as given (Moser and Moin, 1987). However, EVMs still play a

predominant role and are very successful in CFD applications as long as these effects do not have a decisive influence.

Moreover, their robustness, simple implementation and the relatively low computational cost preserves their

popularity, whereas the use of more complex and computationally consumptive modelling techniques can only be

justified by significant and foreseeable improvements.

One-equation models. The one-equation models used in this work are based on a transport equation straight for the

turbulent viscosity nt: It reads in its non-conservative formulation for the SA model as

@*n
@t

þ Ui
@*n
@xi

¼ cb1
*S*nþ

3

2

@

@xi

ðnþ *nÞ
@*n
@xi

	 

þ cb2

@*n
@xi

	 
2
" #

� ðcw1fwÞ
*n
l

	 
2

ð3Þ

without the trip function included in the original version. A damping function is used to adjust nt in the near-wall region

so that

nt ¼ *nfv1; fv1 ¼
X 3

X 3 þ c3v1
; X ¼

*n
n
; cv1 ¼ 7:1:

All other definitions and constants are given below for the modifications proposed previously by (Edwards and

Chandra, 1996).

*S ¼ S
1

X
þ fv1

	 

; S ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffi
2SijSij

p
; fw ¼ g

1þ c6w3
g6 þ c6w3

� �1=6
; g ¼ r þ cw2ðr6 � rÞ;

cb1 ¼ 0:1355; cb2 ¼ 0:622; cw1 ¼
cb1

k2
þ

ð1þ cb2Þ
s

; k ¼ 0:41;

r ¼ tanh
*n

k2l2 *S

	 

=tanhð1Þ; cw2 ¼ 0:3; cw3 ¼ 2; s ¼ 2

3
:

The SALSA model is a modification by T. Rung (Rung et al., 2002) of the above that was inspired by (Menter, 1997).

The main feature is a modified production term where the constant cb1 is enhanced by a function dependent on the
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strain rate. Hence, the production term is sensitized to non-equilibrium effects because the modification primarily

causes a reduction of production for excessive strain rates, and undesirable wall damping is suppressed.

Two-equation models. Both two-equation models are based on a transport equation for the turbulent kinetic energy k

and a second equation for the turbulent frequency o: The k-equation reads for both models

@k

@t
þ

@Uik

@xi

¼ Pk � bkok þ
@

@xi

nþ
nt

2

� �@k

@xi

	 

; ð4Þ

and the o-equation is

@o
@t

þ
@Uio
@xi

¼ Po � boo
2 þ

@

@xi

nþ
nt

2

� �@o
@xi

	 

: ð5Þ

The models differ in the constants b and the representation of the production terms Pk and Po; i.e. in

Pk ¼ cm
k

o
S2 and Po ¼ aS2 ð6Þ

the coefficients cm or a are determined in different ways, where the LLR k–o version is a local linear two-parameter

model derived from realizability and non-equilibrium turbulence constraints. The turbulent viscosity is determined for

both models using

nt ¼ cm
k

o
: ð7Þ

The coefficients of the stress-strain relation and the turbulence-transport equations are all functions of the non-

dimensional invariants of the mean strain and vorticity rates. The approach tries to accomplish consistent stress-strain

distributions not only in plane shear flow but also in more general flow situations.

2.1.2. DES approach

The three-dimensional computations were also performed using a non-zonal hybrid approach introduced as

Detached Eddy Simulation (DES) in 1997 in order to combine the strengths of RANS and LES (Shur et al., 1999).

It is implemented in the standard SA-model such that the length scale l in the eddy-viscosity transport equation is

determined in the following way:

l ¼ MINIMUMðln;CDES MAXIMUMðDX ;DY ;DZÞÞ; ð8Þ

where DJ represents the local cell-width in the direction of the J-coordinate. The DES approach thus has a larger

dissipation of eddy viscosity further away from the wall reducing the overestimated production since l is limited. This

can be seen in the last term of Eq. (3), for example. Due to this additional dissipation, eddy viscosity is lowered, taking

away some of the damping caused by turbulence or higher eddy viscosity.

In this case, no subgrid scale model is used and grid filtering is implied, requiring an unsteady, fully 3-D computation.

The constant CDES ¼ 0:65 is fixed in conjunction with centered differences (Spalart, 2001). It has to be mentioned that

for the method to give good results, fine grids and small enough time steps are necessary, requiring experience and a

thorough knowledge of the time and length scales involved in the specific case. In order to avoid the numerical

dissipation of upwind-based schemes in the DES regions, a hybrid central/upwind approximation of the convective

fluxes is used (Strelets, 2001).

An extension of the two-parameter modelling framework to DES is also possible and requires an alternative

formulation of the dissipation in the k-equation. This is achieved by introducing a lengthscale proportional to the ratioffiffiffi
k

p
=o: Then, the minimum of this length scale, the wall distance ln; and the cell dimension are used to replace o in the

dissipation-term of the k-equation by a term proportional to the ratio of
ffiffiffi
k

p
and the appropriate length scale (Strelets,

2001). Thus, the turbulent frequencies used in the k-equation cannot become smaller than what can also be resolved by

the grid. With this formulation the k dissipation is generally greater, leading to smaller turbulent viscosities to the same

effect as previously mentioned for the one-equation models.

2.1.3. Computational grid

Several investigations in grid refinement and topology for the 2-D case showed that resolving the higher frequency of

the leading-edge vortices impinging on the trailing edge requires a good grid resolution near the walls (see Fig. 3),

whereas the lower frequency of the overall vortex shedding is best resolved by many points in the wake. In view of the

high computation time for the unsteady calculations, a compromise between these two demands has to be found. Four

different grids were initially created that consist of four blocks with orthogonal grid lines, as shown in Fig. 4. The

boundary conditions applied are isothermal boundaries for all walls, inflow for blocks A, C and D, and convective
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outflow ensuring global mass conservation for blocks B, C and D. On the inflow boundaries a constant and

homogeneous velocity is given. The grid is refined towards all walls so that Yþp1 for the grid lines closest to the walls

for any inflow velocity in order to fulfill the Low-Re constraints for the turbulence models.

Based on the assumption that the higher frequency of the force oscillation is dominated by the flow structure close to

the body rather than by the vortex street, a dense grid around the body with a total of roughly 36 000 control volumes is

chosen at the expense of the wake resolution, as shown in Table 1. Consequently, the back flow and impinging eddies on

the trailing edge are well resolved whereas the flow structures in the wake can be only poorly resolved. The influence

observed is that a higher resolution around the body, necessary to render fA adequately, leads to a smaller frequency fSr
of vortex shedding. It has to be mentioned that the treatment of convective terms is equally decisive and that central-

difference schemes are to be preferred.

For the very few preliminary 3-D computations, two different grids are used. The 2-D grid is simply extended in the

third dimension using 20 layers spanning 0:5L ¼ H : The first is an extension of the 36 000 control volume grid in the

third dimension. The second, a finer grid with 25 layers consisting of 70 000 control volumes each, resulting in a total of

roughly 1 800 000 volumes, is currently under examination. Periodic boundary condition is chosen in the third

dimension to enable structures with a dimension of multiples of H to develop.
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Fig. 4. Block structure, boundary conditions.

Table 1

Rough number of grid volumes and their partitioning

Grid volumes Block A Block B Blocks C,D

15.000 30� 27 80� 27 150� 40

24.000 30� 27 120� 27 190� 50

36.000 50� 47 100� 47 235� 60

46.000 60� 37 190� 37 300� 60

Fig. 3. Close up of computational grid (left) and detail of upper right trailing edge grid refinement in an area of 0:5H � 0:37H (right).
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2.2. Structural-mechanical solver

The linear differential equation for the oscillation of the body,

m
@2y

@t2
þ d

@y

@t
þ cy ¼ F ; ð9Þ

is discretized using third-order accurate finite differences for the derivatives with respect to time, @2y=@t2 and @y=@t: The
points used are ymþ1 (forward time), ym and k points ym�k (backward time), and it is necessary to use k ¼ ð1; 2; 3Þ to
achieve third-order accuracy for @2y=@t2: The procedure is simplified by the fact that the problem is solved using a

constant time step Dt: Applying a Taylor-series expansion one gets

ymþ1 ¼
�1

11m
12ðDtÞ2

þ d
3Dt

� � ym
�5m

3ðDtÞ2
þ

d

2Dt
þ c

	 

þ ym�1

m

2ðDtÞ2
�

d

Dt

	 

þ ym�2

m

3ðDtÞ2
þ

d

6Dt

	 
�

� ym�3
m

12ðDtÞ2

	 

� Fm

�
; ð10Þ

and an explicit computation of the instantaneous amplitude at time step m þ 1 is possible with a given force Fm

obtained from the pressure and friction on the body at time step m: This procedure is implemented in the fluid-

mechanical solver described in the previous sections achieving loose coupling.

An analytical solution is available for a harmonic excitation given by F ¼ AeiOt:

yðtÞ ¼ Y ½e�f0Dt cosð fDt þ jÞ	 þ A
1

c
aðOÞcosðOt � dðOÞÞ

� �
; ð11Þ

where j denotes the phase shift that has to be computed from initial conditions together with the constant Y ; and

aðOÞ ¼
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ð1� Z2Þ2 þ 4D2Z2
q ;

Z ¼
O
f0
; dðOÞ ¼ arctan

2DZ
1� Z2

	 

: ð12Þ

Therefore, the numerical implementation can be successfully validated against analytical solutions and a variation of

time steps gives an exact reduction of the deviation in comparison to the analytical solution according to the order of

the scheme. In Fig. 5, the analytical results for a free and damped oscillation from an initial position not in equilibrium

are depicted. The analytical and numerical solutions are almost congruent, because the time-step size was chosen to be

small.

Some numerical damping can be observed, which has also been reported by others, e.g. (Semler et al., 1996) in

application to nonlinear differential equations. As the same time step is chosen for the solution of both the fluid-

mechanical and the structure-mechanical problem, and the flow solution requires a much higher temporal resolution,

the time step is very small compared to the natural frequency of the structure. Therefore, this numerical damping is

negligible. Moreover, the time-step size is small enough so that the given numerical order of accuracy is sufficient to

resolve the oscillations.

2.3. Coupling procedure

The principle of the coupling procedure is shown in Fig. 6. By taking the sum over all normal and shear stresses

acting on the body in the direction of the oscillatory degree of freedom, the excitation force is known at time t: This
force is used (Step 1 in Fig. 6) to compute the amplitude for t þ Dt with Eq. (10) (Step 2). The whole computational grid

is then moved according to the amplitude of motion, and the grid fluxes are computed (Step 3) so that the flow solution

for t þ Dt can be computed (Step 4). Despite the higher orders of the structure and fluid mechanical solvers

independently, this procedure is explicit in time and involves only a loose coupling of first order (Piperno et al., 1995).

Nonetheless, due to the very fine time step necessary this accuracy is considered sufficient and discrepancies between

experiments and results are shown to be influenced by other effects.
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3. Results

Results are presented for two- and three-dimensional computations (2-D and 3-D, respectively); however,

coupled solutions have thus far been obtained for the 2-D cases only. In the results that follow, the normalized inflow

velocity V given as a parameter is proportional to the Reynolds number where V ¼ 3:0 corresponds to Re ¼ 2� 104:
The angle of attack is 0
 and the length to height ratio is L=H ¼ 2: The level of inflow turbulence intensity was kept

below 1%.

3.1. 2-D computations, stationary body

A basic premise for good results from the coupled solutions is that the simulation of the flow has to be as accurate as

possible in this case because the flow dominates the behavior of the coupled system. Therefore, to gain insight into the

factors driving accurate flow modelling a study of influential parameters is completed for a stationary body with

unsteady flow. The main goal is to define an adequate time step for the simulation that can capture the unsteady flow

features causing the body to oscillate. Therefore, the Strouhal number computed with the time history of the lift

coefficient is the best indicator for determining whether all the frequencies in the range of the natural frequency of the

oscillation have been captured.

Fig. 7 shows a contour plot of an instantaneous velocity distribution revealing the strongly asymmetric and unsteady

behavior of the flow that amounts to a vortex street with two dominating frequencies, i.e. two distinctive and opposing

vortex pairs. The computation was done using the LLR k–o turbulence model.

The lift and drag coefficients are shown in Fig. 8. The mean and time-dependent lift and drag coefficient CL and CD

can be compared to experimental data, for example (Deniz and Staubli, 1997; H!emon and Santi, 2002). The mean lift

coefficient is, of course, zero and the mean drag coefficient is computed to be 0.85 giving good agreement with

experimental data. Moreover, the figure shows that the drag reaches its maximum together with the highest lift, whereas

its minimum value corresponds to the dent in the lift curve. This corresponds to the vortex impinging the trailing edge,

see Fig. 2, along with a parting of the vortex, such that part of the recirculating fluid on the surface of the body reduces

the drag.
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To illustrate the effect of vortex impingement, Fig. 9 shows the flowfield around the stationary body at different

times. The corresponding lift coefficients are identified in Fig. 10, where (a) is not part of the detail as it is close to zero

lift during lift increase. (b) marks the point with maximum lift where the flow is not influenced by the trailing edge,

whereas for (c) and (d) the interference of the edge can be seen in the reduced flow velocity in the vicinity of the edge.

3.1.1. Variation of time step

The time step is varied four times for three different mean flow velocities V ; and the LLR k–o turbulence model is

used. A significant difference in the lift-versus-time graph can be seen between the coarsest and finest time step, as

shown in Fig. 11. The main detriment of a too coarse time step lies in the failed representation of the higher frequency

that cannot be resolved by a coarser time step. This higher frequency corresponds to fA and causes the dent in the peaks

of the lift-versus-time curve, as shown in Fig. 10. Obviously, to capture this behavior it is essential to simulate the vortex

impingement. Moreover, with a finer time step, the curve evolves more regularly, hinting at a better reproduction of the

periodic nature of the phenomenon.

The computed Strouhal numbers, shown in Table 2, are too low compared to experimental data that usually give 0.08

(Deniz and Staubli, 1997) for a wide range of Reynolds numbers. Moreover, the Strouhal numbers differ depending on

the time step. In this case, the experimentally determined Strouhal numbers (for vortex shedding only) are better

captured using a coarser time step which is not adequate for computing fA as already mentioned in context of the

description of the numerical grids. The reason can be recognized in Fig. 11. If the time step is not sufficiently small to

resolve fA; the overall frequency fSr of vortex shedding that is used to compute the Strouhal number for Table 2, can
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grow. Therefore, the convergence of the Strouhal number is not necessarily monotonic when the flow physics change

due to the improved accuracy of the simulation.

Obviously, a constant time step is not applicable for all velocities. Rather, a constant normalized time step has to be

chosen so that the physical time step is reduced with increasing flow velocity as fSr and fA also increase. Choosing a

constant normalized time step assures that a constant Strouhal number can be resolved equally with increasing

Reynolds number in the given range.
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The goal to render resonance for the coupled computations thus necessitates fA to be resolved, which represents the

impingement of leading edge vortices on the trailing edge. Resonance happens at a velocity Vo1=Sr and cannot be

achieved by a too coarse time step. A normalized time step DtðU=HÞ ¼ 0:1 is found to be adequate for first-order time

discretization of the flow computation with the code described previously to fulfill the aforementioned requirements.

An analysis of the frequencies exhibited by the lift coefficient time history is shown as a discrete Fourier transform

(DFT) in Fig. 12, and three important points are identified: The constant natural frequency f0 of the body and its

bearing, the smaller frequency fSr of global vortex shedding and the higher superimposed frequency fA that can

obviously become critical for 6:0oVo9:0: The critical velocity determined experimentally is roughly V ¼ 5:5
(Ikenouchi, et al., 1982), and this result apparently cannot be captured by the 2-D simulation. However, the

phenomenon can be simulated, but the frequency is too low because the predicted Strouhal numbers are already too

small. Moreover, as shown in Fig. 22, for higher flow velocities, the galloping instability is very well reproduced, but at

also a too small Strouhal number.

3.1.2. Variation of turbulence models

As shown in Fig. 13, the one-equation models are not capable of rendering the unsteadiness of the flow adequately,

whereas the two-equation models exhibited sufficient unsteadiness, but differed in the frequency fA: The LLR k–o
model exhibits the highest frequency and smoothest curve and is thus adopted for all of the remaining computations.

The SA model does not exhibit any unsteady behavior in a reasonable time interval, whereas the SALSA model gives

growing amplitudes. The results produced by the SA and SALSA models are not as periodic as desired and do not

exhibit two distinct frequencies. This is a well-known weakness of the one-equation RANS modelling framework,

restricting it to attached flows around streamlined bodies in aerodynamic applications, even though the one-equation

models are successful and very efficient with respect to computing time and stability.

3.1.3. Frequency gap

A basic premise for applying the RANS equations to unsteady flows is a gap between resolved frequencies, such as fA;
and any modelled frequency, such as the turbulent frequency. This gap directly corresponds to the time period

chosen for Reynolds averaging. The time step chosen for temporal discretization has to be sufficiently larger than the

averaging period in order to ensure that a resolution of the modelled frequencies is avoided (Rung, 2000). This

difference in the time scales can be expressed and validated in terms of a spectral or frequency gap between the

maximum frequency fm that can be resolved by the time step and the minimum frequency ft modelled by the turbulence

closure chosen.

To estimate a resolved frequency, one has to simply assume a number of time steps that are necessary for a given code

of a certain order to map a complete period of an oscillatory curve, such as the sine curve. Based on the rough but

conservative estimation that a period of 1=fm can be represented by n ¼ 10 points or time steps with DtðU=HÞ ¼ 0:1;
this spectral gap can only be guaranteed very close to the wall where the turbulence models act almost as in steady state

due to the very high turbulent frequencies compared to the mean flow unsteadiness, even if this mean flow unsteadiness

is comparatively small like fA in comparison to fSr:
This area is restricted to roughly 10 control volumes distance from the walls. Thus, an overlapping of turbulent and

resolved frequencies occurs almost in the whole computational domain and not only in the wake. As an example to

demonstrate the worst case, in Table 3, the smallest turbulent frequencies are given together with the distance from the

rear wall in the wake where they occur. As a comparison, the maximum frequency presumedly resolved by DtðU=HÞ ¼
0:1 at a given velocity is also stated. Consequently, a false reproduction of the energy spectra of turbulent and mean

flow oscillations cannot be ruled out, but it is impossible to quantify the impact, all the more when the overall results

remain correct (L .ubcke et al., 2001).
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Table 2

Variation of time step, resulting Strouhal numbers for different flow velocities

V ¼ 3:0 V ¼ 5:5 V ¼ 15:0
Dtdim½s	 DtðU=HÞ Sr DtðU=HÞ Sr DtðU=HÞ Sr

0.005 0.05 0.055 0.092 0.053 0.25 0.057

0.01 0.1 0.055 0.183 0.050 0.5 0.055

0.02 0.2 0.057 0.366 0.061 1.0 0.054

0.04 0.4 0.062 0.732 0.067 2.0 0.033
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Figs. 14 and 15 show instantaneous distributions of the ratio of turbulent to resolved frequencies ft=fm around the

body for two different velocities with exemplary cuts to illustrate the data in Table 3. The figures depict the ratio on the

cut versus normalized wall distance ln=H:
In conclusion, conflicting purposes remain—resolving the oscillatory frequency fA of the mean flow and not resolving

any turbulent frequency ft while maintaining a small time step to ensure the stability and accuracy of the solution

method. Alternatively, the solution method for the flow could be changed completely to LES or DES at the expense of

much higher computational costs.
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Table 3

Spectral overlap using LLR k–o turbulence model

V fm (Hz) ft (Hz) ln=H

3.0 9.8 0.045 16

5.5 18.0 0.165 15

6.0 19.6 0.186 16

9.0 29.4 0.374 11

12.0 39.2 0.671 7

15.0 49.0 0.853 8
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3.2. 3-D computations, stationary body

The 3-D DES did not yield the desired results with an improved representation of frequencies. However, 3-D effects

are visible, as exemplified by Fig. 16. The iso surfaces of instantaneous velocity reveal non-tube-like structures in the

upper wake region and close to the wall, indicating oscillations in the third direction. Though their wavelength is

restricted due to the limited number of cells in that direction and the periodic boundary condition, the frequencies tend

to become smaller using a 3-D instead of a 2-D simulation with the same turbulence model. Therefore, smaller time

steps are essential. Although the primary frequency fSr becomes smaller and closer to the experimental results, the
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oscillatory behavior does not show the regular and distinct separation of fSr and fA as obtained with the 2-D

computations.

It should be noted that the 3-D computations are very time consuming. With a cluster that consists of 22 Pentium II

ð400 MHzÞ PC’s, one period of the stationary body took roughly 5 CPU-days during which the performance was

approximately 70% for each processor. This high CPU load was achieved with a domain-decompositioned block-

structured grid whose blocks could be made to be equal in size due to the simple geometry. In order to obtain

reasonable results that can be time averaged or analyzed statistically or by Fourier analysis, computation times of up to

several months are required after initial perturbations have subsided which itself can take a month. Long run times even

on a faster PC cluster are required, and, therefore, parametric studies or more comprehensive investigations, e.g., in grid

dependence, are still unfeasible for 3-D unsteady computations even if movement of the grid is not included.

3.3. 2-D computations, oscillating body

The computations described in this section are achieved using the LLR k–o model in conjunction with a normalized

time step of DtðU=HÞ ¼ 0:1 by restarting from an unsteady simulation of a stationary body with a regularly oscillating

solution. This initial condition results in a rapid development of the coupled solution and allows one to determine

whether a resonance is developing early during the solution computation. Comparing Fig. 17 with Fig. 11, it is clear
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that the principal behavior of the flow does not significantly change compared to the stationary results. The lift curves

remain uninfluenced, and the two dominant frequencies still occur. With higher flow velocity V ; the frequencies grow,
justifying the use of a normalized time step size as previously mentioned.

The range of mean flow velocities can be separated into two parts at a flow velocity slightly beyond the resonance

velocity at fA ¼ f0: The two experimentally found resonance velocities V ¼ 5:5 and 12.0 can be assigned to each of these
parts. In the first part the oscillations of the body are in phase with the lift force, whereas the oscillations are out of

phase beyond the first resonance, as shown in Fig. 21. The numerical resonance velocity corresponding to the

experimental V ¼ 5:5 is slightly above V ¼ 7:0; as revealed in the Fourier transforms in Fig. 19. Contrary to this

discrepancy, the second resonance velocity is captured well, as shown in Fig. 22.

The evolution of amplitudes of motion for two flow velocities from these two parts are shown in Fig. 18 and the

typical behavior of a body with a degree of freedom perpendicular to the flow with L=HE2 is observable.

With increasing flow velocity, the displacement amplitude of the body increases first. After reaching resonance at

fA ¼ f0 ð7:0oVresonanceo7:4) due to the impingement of leading edge vortices on the trailing edge, the amplitude

decreases rapidly as the leading edge vortices do not hit the trailing edge for higher flow velocities. The excitation by the

global vortex shedding due to leading edge separation ðVE1=SrÞ slowly begins to prevail, resulting in the onset of

galloping roughly at V ¼ 12:0; Fig. 22.
In Fig. 19, it can be seen that the discrete Fourier transformed frequencies of the movement have a peak at f0 for

V ¼ 7:0; which reveals that the body oscillates with f0 due to fAEf0: Moreover, the peak in the amplitude of the lift is

almost totally cancelled out at V ¼ 7:0; which can also be seen in Fig. 21. This demonstrates that the body follows the

vortices tending to avoid the impingement of these vortices on the trailing edge.

Although the vortex street forms the main unsteadiness in the mean flow with the highest amplitudes, these main

oscillations of the lift at a frequency fSr have no influence up to that point and a little beyond until galloping starts. They
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are, therefore, not responsible for this resonance. Increasing the velocity beyond V ¼ 7:4 the natural frequency has been
exceeded with fA > f0; and the amplitudes decrease, oscillating out of phase. This development is graphically

demonstrated in Fig. 21. The largest amplitudes of motion occur for V ¼ 7:0 and the lift curve is somewhat smoothed

out by the movement of the body which oscillates almost regularly with fA:
Fig. 19 depicts a high amplitude at V ¼ 12:0 caused by fSr that increases with raising the flow velocity V : This

galloping phenomenon can be estimated based on a galloping force model as presented in H!emon and Santi (2002). The
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Scruton number can be calculated to be Sc ¼ 2Dm=ðrH2Þ ¼ 4DRr ¼ 2:88; and the time lag between the lift oscillations
and first temporal derivative of the motion can be evaluated to be tr ¼ tðU=HÞ ¼ 3; as shown in Fig. 20. The slope of

the lift curve @CL=@a dependent on the angle of attack is taken from (Deniz and Staubli, 1997). Then the following

equation is evaluated:

V

4pSc
þ

2

@CL=@a cosð2ptr=V Þ
¼ 0 ð13Þ

for V yielding V ¼ 12:0: This result agrees well with the experimental and numerically found flow velocity. In

evaluating Eq. (13), it is found that the parameter tr is the most influential. This means that it has to be computed very

accurately because small deviations yield different results.

Comparing the amplitudes of motion to the experimental results, it is found that the maximum amplitude of

oscillation computed numerically at V ¼ 7:0 is roughly 4% of the body’s height H whereas experiments or

computations yield 8% at V ¼ 5:5 (Ikenouchi et al., 1982; Anju et al., 1995) indicating that amplitudes and frequencies
of the experiments for the first resonance are not captured quantitatively. Although the amplitudes might be increased

by using another flow velocity 7:0oVo7:4; the goal to reproduce the experimental resonance velocity is thus not yet

achieved by the 2-D coupled computations. A comparison of experimental data and computations is presented in

Fig. 22, where the experimental data show the same principal behavior dependent on the flow velocity. It can be seen

that the agreement with experiments becomes better for higher velocities and becomes very good when galloping has

begun.

4. Conclusions

The phenomenon of flow oscillations can be simulated with results that are qualitatively correct by the described

procedure. The goal to reproduce the first experimental resonance velocity caused by vortex impingement on the trailing

edge, however, is not yet achieved by the 2-D coupled computations and will not be achieved without changes in the

modelling procedure for 2-D. To facilitate improvements in the modelling techniques, more experimental data

predominantly in the time domain are needed to fully validate the procedure and to make more reliable comparisons.

Determining the reasons for the deviation from experiments can only be done in the scope of the varied parameters.

Although all of the modelling parameters have not been investigated in this study, the most influential are clear: spatial

and temporal discretization, numerical procedure, and physical models, especially for treating turbulence. However, to

quantify the influences, a complete matrix of computations will ultimately be required. This extensive investigation is

currently unfeasible in view of an average computation time of roughly 3.6 CPU minutes for one time step with 100

inner iterations on a Pentium III 600MHz for a 2-D testcase with 36.000 volumes (incompressible, two-equation

turbulence model). As shown in this paper, the treatment of turbulence plays a dominant role and an enhanced

predictive range including impinging or free shear flows and strong streamline curvature is a premise for a good

representation of the flow. It has been shown that it is possible to compute naturally unsteady flows in the context of

fluid–structure interaction by solving the unsteady RANS equations. For higher flow velocities, the maximum

amplitudes were shown to agree fairly well with experiments.

Attaining the required spectral gap has proven to be elusive, however, due to the small time steps necessary to resolve

all frequencies. Methods with a higher resolution, such as DNS or LES would address these problems but they will

remain unfeasible in an engineering environment for the foreseeable future. Thus, a hybrid approach must be chosen.

However, an improvement could not be achieved with the standard approach because it is based on a one-equation

turbulence model that alone has failed to predict the unsteady behavior.

This well-known weakness of linear eddy-viscosity models for these kinds of flows, as already mentioned in the

description of the models, is that they tend to overpredict the production of eddy-viscosity. This shortcoming can be

overcome by a limitation of time and length scales, leading to an enhanced kind of DES approach for two-equation

models that is currently under development. As the complexity of the flow discussed in this paper is too high this effect

cannot be isolated and investigated here. Also, the effect of streamline curvature must be included separately and should

be investigated in future work.

The coupling procedure was not thoroughly investigated, so its influence, as well as the influence of any transition

modelling cannot be ruled out. An iterative coupling in time such as a predictor-corrector scheme will probably give

better results for coarser time steps. As the numerical time step is very small with respect to the oscillation frequency

with 170ono200 points per period in fA; however, the chosen coupling of first-order accuracy is estimated to be

sufficient. This also holds for the explicit discretization of the structure-mechanical differential equation itself, as a
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higher order will not be profitable for the chosen coupling procedure (Piperno et al., 1995). Moreover, the deviations

from experimental results in the Strouhal number occurred for the stationary body even without coupling.

The transition modelling cannot be validated for this test case due to the lack of experimental data; however, the

mainly separated flow has likely undergone laminar turbulent transition at the sharp leading edge, which justifies the

fully turbulent computations.

The 3-D results are not complete, and more research is needed. Initial results point to a lower damping in the flow

with the possibility of a better representation of the frequencies. To further confirm this observation, more experimental

data for this or similar cases will have to be gathered.

Summarizing, this fluid–structure interaction problem remains, though simple in geometry, a challenging and

complex task that requires a careful explanation and substantiation of the methods chosen, and further research is

considered necessary.
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